

How to Design AME with the CST Studio Suite

0

0

0

01 Introducing A.M.E

Introducing AME

Introducing some AME designs

Required design Features

(Some) Needs when Designing AMEs

- Schematic of the electronic circuit
- Footprints of used components
- Which Pads to interconnect?
- Outlines of components
- 3D Wiring
- Capacity/inductivity of printed capacitors/ coils
- Impedance of RF lines
- Cross-Talk between the lines
- Antenna efficiency and radiation characteristics
- RF Reflection/transmission on Filters/Couplers...

Why CST Studio Suite?

- Ability to import Footprints
- Ability to import interconnection information
- 3D tool:
 - 3D Wiring
 - Placing and embedding 3D bodies
- Simulation capabilities:
 - Lumped passive elements
 - RF transmission lines
 - Scattering parameters
 - Antenna performance
 - And much more...

02 Full 3D Wiring

The J.A.M.E.S Coin

Starting in eCAD

Starting point: schematic in eCAD

- Data for COTS available for eCAD
- Way of circuit design does not change

Next step: Place footprint in PCB design tool

- Footprints required in 3D design tool
- Coil and capacitors will be added in 3D

The J.A.M.E.S Coin Going 3D in CST Studio Suite

Export as ODB++

- Contains dimension of the pads
- Preserves information of interconnectivity

The J.A.M.E.S Coin

3D Wiring in CST Studio Suite

Interconnecting Lines

- Arbitrary cross section
- Can run through all 3 dimensions

The J.A.M.E.S Coin Becoming Reality

03 Design of Lumped Elements

DC Simulation of capacitors

• Use the Electro-Static solver

- Create a 3D model of the capacitor
- Define different electric potential on the plates
- Diagonal entries define the capacity towards the boundary defined as GND

Capacitance Matrix	(lumped):	
	potentiall	potential2
potentiall potential2	1.910261e-13 F 2.136648e-11 F	2.136648e-11 F 9.655935e-14 F

Simulation of capacitors for RF

- Use the frequency domain RF solver
- Select the frequency range
- Template to calculate Capacity available

Simulation of coils for RF

- Template to calculate Inductivity also available
- Take care of right boundary settings
- Inductivity changes with frequency

04 Design of RF Transmission Lines

Traditional Transmission Lines

AME Transmission Lines Possibilities

Coaxial line

- TEM-mode
- Impedance constant
- No modal dispersion

Rectangular line

- TEM-mode
- Impedance constant
- No modal dispersion
- Easier to print

Rounded rectangular line

- TEM-mode
- Impedance constant.
- No modal dispersion
- Easier to print
- No sharp edges/corners

AME Transmission Lines

Design and Simulation

Parametrization of Transmission line

Selected parameters - Goal: 50Ω

w_i	0.5 mm
h_i	0.1 mm
r_i	0.03 mm
w_a	5 mm
h_a	2.5 mm
r_a	0.3 mm

Simulation of initial parameters

How to get to 50Ω without manual fine tuning ?

AME Transmission Lines

Parameter Sweep

AME Transmission Lines

Optimizer

Drawbacks of parameter sweep

- Parameter sweep can be time-consuming
- Rough idea of parameter direction required
- Usually very coarse scanning of parameter space

Alternative: Integrated Optimizer

- Easy way to define cost function
- Geometrical limits of parameters easily implemented
- Very little manual effort/ interference required

Best Parameter settings after 42 evaluations

w_i	0.99707366718717 mm
h_i	0.15313665841374 mm
r_i	0.024693243111302 mm
w_a	4.698797724559 mm
h_a	1.8908158097319 mm
r_a	0.3 mm

05 Design of RF TML Adaptions

RF scattering parameters

Connector For rounded rectangular line

- Goal: provide adaption of RF connectors to TML for measurement setup (< 20Ghz)
- Direct adaption difficult due to material flow at edges
- Considering 3 different parts i.e., 2 transitions

RF scattering parameters

Connector For rounded rectangular line – 1st transition

- Determine geometrical parameters to get 50Ω lines
- Geometrical variations small

RF scattering parameters

Connector For rounded rectangular line – 2nd transition

Consideration of whole structure • Make sure rectangular TML is 50Ω S-Parameters [Magnitude] -30 晲 -40 10 12 Frequency / GHz

06 Design of Antennas

Antenna performance

Patch antenna

- Feed structure: rectangular TML with rounded corners
- Goal: patch antenna at 10GHz
- Interesting data: reflection, far fields, efficiency

• Small bandwidth

Antenna performance

Patch antenna

• Radiation pattern

- Radiation efficiency
- Loss tangent of 0.02

Curious?

Contact us: contact@j-ames.com

FOLLOW US ON

()

0

0

0

0

J.A.M.E.S GmbH

n

0

0

0

JAMES_Gr

JAMES_GmbH

JAMES_GmbH

Be part of the AME Revolution!

www.j-ames.com

0

0

С

Q

0

J.A.M.E.S GmbH

0

0

0

0

0

JAMES_GmbH